THE STRUCTURES, STEREOCHEMISTRIES, AND CONFORMATIONS

OF TWO ISOMERIC TETRABROMO-2, 3-BENZOCYCLOHEPTENONES +

M.C. Woods*, S. Ebine**, M. Hoshino**, K. Takahashi*, and I. Miura*⁺⁺

*Department of Chemistry, Tohoku University, Sendai, Japan

**Department of Chemistry, Saitama University, Urawa, Japan

(Received in Japan 14 May 1969; received in UK for publication 16 June 1969)

Bromination of 2,3-benzocycloheptenone, (1), has been shown¹⁾ to afford two isomeric $C_{11}H_{p}OBr_{A}$ tetrabromo derivatives, isomer A (IIa; m. 141.5-142°) and isomer B (IIb; m. 145.5-146.5). The structures of these isomers (IIa and IIb) and their products of dehydrobromination (IIIa and IIIb)¹⁾ are discussed in this report.

The 100 Mc n.m.r. spectra (see Table 1; IIa and IIb)*¹⁾ of the two isomers A and B are very similar. Both are characterized by a strongly coupled ABCD system (aromatic hydrogens) and an ABMX system (-C₍₆₎H₂-C₍₅₎HBr-C₍₄₎HBr- sequence) which, in conjunction with the Overhauser experiments recorded in Table 1 (c), suggests that both compounds have the same planar structure II. The reactions discussed in the following fully confirm this proposal.

(a) <u>Chemical Shifts (δ ppm)</u> * ¹			(b) <u>Coupli</u>	(b) Coupling Constants (Hz)		(c) Nuclear Overhauser Effects		
	Ιία	ПР		lla	ЦЬ			
H	5.38	5.47	J.0 E	1.9	1.6		lla	Iњ
4р Н ₅	4.69	5.04	4β, 5 ^J 4β, 6α	< 0.1	0.8	{H ₄ } H ₁₁	16%	17%
Η _{δα}	3.84	3.57	^J 4В, 6В	1.1	< 0.1	{H ₁₁ } H ₄	23%	20%
H _{6B}	3.56	3.22	J _{46.8}	0.4	0.4			
H ₈	ca 7.53	ca 7.60	^J 48, 11	0.4	0.4	Measured in degassed CDCI		
H ₉ , H ₁₀	ca 7.45	ca 7.5	J _{5.6α}	10.6	4.2	solution.		
н,	ca 7.27	ca 7.29	^J 5, 6β	4.1	10.3			
			^J 6α, 6β	15.5	15.5			

TA	BI	E	1
1A	BL	.с	1

++ Present address. Nichiden Varian Co.Ltd., Azabu, Tokyo.

⁺ Part VII in a series on 3,4-Benzotropolone and Related Compounds; for Part VI, see M.Hoshino and S.Ebine, Bull.Chem.Soc.(Japan),41,2949(1968).

Dehydrobromination of isomer A affords both IIIa and IIIb, whereas only IIIa is obtained from IIb under similar conditions.¹⁾ Bromination of IIIa yields the tribromo derivative IV, which is also obtained by bromination of Lunder drastic conditions followed by dehydrobromination in pyridine.¹⁾ The structures of IIIa, IIIb, and IV are established by the n.m.r. data shown in Table 2.¹⁾

T	A	В	L	Е	2
---	---	---	---	---	---

	(a) <u>Chemical Shifts (δ ppm)</u> * ¹					(b) Coupling Constants (Hz)				
	H ₄	н ₅	н ₆	H ₇	н ₈	н ₉ /н ₁₀	н		1	,
ш	-	7.19	7. 42	-	8.28*	ca 7.7	8.08*	4,6	4,8	4,11
Illa	7.75	-	8.08	-	8.35	ca 7.7	7.55	-	-	$-(J_{5,6}^{=9.2})$
IV	7.71	-	8.12	-	8.51	7.80**	7.45	1.7	0.5	0.5
v	7.89	-	-	6.42	8 43	ca 7 6 c	a 7 5	1.7	0.5	0.5
		-	0.42			-	0.5	0.5 $(J_{4,7} = ca 0.2)$		

* H_{R} and H_{11} assignment is ambiguous. ** H_{10} signal.

IV

As described previously, 1) the dibromo compounds IIIa and IIIb undergo abnormal nucleophyllic substitution at the 6-position to afford a series of 6-substituted derivatives, of which compound V is an example. The structure reported $^{1)}$ for this compound is in accord with the n.m.r. data given in Table 2.

As can be seen from Table 2, H_{A} is equally coupled (0.5 Hz) to both protons H_{B} and H_{11} in the 2,3-benzotropones IIIa, IV, and V, and hence these couplings cannot serve to assign the H₈ and H₁₁ signals. However, in the absence of a substituent at C_4 , H_8 is expected to appear at lower field than H_{11} . In IIIb, these signals cannot be unambiguously assigned, since with a 4-bromine H₁₁ also shifts to lower field. The methoxyl at C₍₆₎ in V is coupled to $H_7 (J = 0.7 Hz)^{3}$ and, in addition, provides a relaxation pathway for H_7 as evidenced by the observation that saturation of the OMe resonance at 3.86 causes an 18% enhancement of the H_7 signal,^{2,3,4} viz. {OMe} $H_7 = 18\%$.*²

The structure of "compound VII", ¹⁾ a side-product in the methanolysis of IIIa, was also determined. The n.m.r. data shown in Table 3, particularly the N.O.E's, rigorously define the structure shown. It is noteworthy that the peri-protons, H_5 and H_8 , owe little of their relaxation to the adjacent methoxyl and hydroxyl groupings. Similar behaviour has also been observed⁴⁾ in related structures such as α -naphthol and its methyl ether.

The stereochemistry of the tetrabromo isomers IIa and IIb is deduced as follows.

The magnitudes of the H₅ couplings (see Table 1) indicate that in both isomers the H₅ / H₄ dihedral angle is near 90° and the dihedral angle between H₅ and one of the H₆ protons is near 180°. This plus the stereospecific W-coupling⁵⁾ between H₄ and H₆, suggests that IIa and IIb have the stereostructures depicted in VIa amb 's'ho (but not necessarily) respectively). A composition of the chemical shifts of 'h₃, 'h_{6a}, and 'h₆, 'in 'ha and IIb, reveals that H_{6a} and H_{6b} are at higher field in IIb than in IIa, while H₅ is at lower field in IIb than in IIa. This indicates that stereo-structure VIa should be assigned to isomer A, and VIb to isomer B, since both H_{6a} and H_{6b} are more above the plane of the benzene ring in VIb than VIa, and H_{6a} is closer to the 4-bromine in VIa than in VIb, and H₅ is more in the plane of the benzene ring, and closer to the 4-bromine, in VIb than in VIa.

The stereostructures provide a simple explanation for the fact¹⁾ that dehydrobromination of IIa (= VIa) affords both IIIa and IIIb, whereas IIb (= VIb) affords only IIIb, since "trans-diaxial" elimination of either the 4- or 5-bromine as HBr is possible in the <u>cis</u> isomer VIa, but not in the <u>trans</u> isomer VIb. However, elimination of the 4-bromine in VIb can occur by the following mechanism.

REFERENCES AND FOOTNOTES

- *¹ The n.m.r. spectra were measured on an HA-100 using CDCl₃ solutions with TMS (δ = 0.00 ppm) as field / frequency lock, unless otherwise specified. Assignments were confirmed by multiple resonance experiments.
- *² For brevity, nuclear Overhauser effects (NOE's)²⁾ are reported in this paper in the form "{OMe} $H_7 = 18\%$ ", which should be read as "saturation of the methoxyl resonance causes the H_7 signal to exhibit an 18% increase in intensity".
- 1) S. Ebine, M. Hoshino, and K. Takahashi, Bull.Chem.Soc., (Japan) <u>41</u>, 2942 (1968).
- 2) F.A.L. Anet, A.J.R. Bourn, J.Am.Chem.Soc., 87, 5250 (1965).
- Methoxyl signals are commonly coupled to the adjacent proton on the same double bond, particularly in the troponoids, Cf. T. Mukai, T. Miyashi, M.C. Woods, <u>Tetrahedron Letters</u>, 433 (1967); M.C. Woods, I. Miura, A. Ogiso, M. Kurabayashi, H. Mishima, <u>Ibid</u>, 2009 (1968), and reference 4) below.
- 4) M.C. Woods and I. Miura, "Abstracts 7th NMR Symposium, Nagoya, Japan (1968)", p. 145.
- 5) S. Sternhell, <u>Rev. Pure and Applied Chem.</u>, <u>14</u>, 15 (1964).